L-AP4 inhibits calcium currents and synaptic transmission via a G-protein-coupled glutamate receptor.
نویسندگان
چکیده
The AP4 (2-amino-4-phosphonobutyrate) receptor is a presynaptic glutamate receptor that inhibits transmitter release via an unknown mechanism. We examined the action of L-AP4 on voltage-dependent calcium currents and excitatory synaptic transmission on cultured olfactory bulb neurons using whole-cell voltage-clamp methods. In neurons dialyzed with GTP, L-AP4 inhibited high-threshold calcium currents evoked in barium solutions. The inhibition was irreversible in the presence of GTP-gamma-S and blocked by removing intracellular Mg2+ or by preincubation with pertussis toxin (PTX), consistent with the involvement of a PTX-sensitive G-protein. Dialysis with staurosporine or buffering of intracellular calcium to pCa less than 8 did not block the action of L-AP4, suggesting that protein phosphorylation or release of intracellular calcium stores was not involved in calcium current inhibition under these experimental conditions. PTX also blocked the L-AP4-induced inhibition of monosynaptic EPSPs evoked by intracellular stimulation of cultured mitral cells. These results suggest that the presynaptic AP4 receptor is a G-protein-coupled glutamate receptor, and that inhibition of calcium influx by a membrane-delimited action of a G-protein may account for L-AP4-induced presynaptic inhibition.
منابع مشابه
Norepinephrine inhibits calcium currents and EPSPs via a G-protein-coupled mechanism in olfactory bulb neurons.
The most pronounced effect of norepinephrine (NE) in the olfactory bulb is disinhibition of mitral/tufted (M/T) cells. Although it has been previously proposed that the effects of NE are mediated by a direct inhibitory action on granule cells, we have demonstrated that NE could exert it effects through inhibition of excitatory synaptic transmission from M/T cells to granule cells (Trombley and ...
متن کاملPresynaptic G-protein-coupled receptors regulate synaptic cleft glutamate via transient vesicle fusion.
When synaptic vesicles fuse with the plasma membrane, they may completely collapse or fuse transiently. Transiently fusing vesicles remain structurally intact and therefore have been proposed to represent a form of rapid vesicle recycling. However, the impact of a transient synaptic vesicle fusion event on neurotransmitter release, and therefore on synaptic transmission, has yet to be determine...
متن کاملAdenosine A1 and class II metabotropic glutamate receptors mediate shared presynaptic inhibition of retinotectal transmission.
Presynaptic inhibition is one of the major control mechanisms in the CNS. Previously we reported that adenosine A1 receptors mediate presynaptic inhibition at the retinotectal synapse of goldfish. Here we extend these findings to metabotropic glutamate receptors (mGluRs) and report that presynaptic inhibition produced by both A1 adenosine receptors and group II mGluRs is due to G(i) protein cou...
متن کاملModulation of mEPSCs in olfactory bulb mitral cells by metabotropic glutamate receptors.
Olfactory bulb mitral cells express group I (mGluR1), group II (mGluR2), and group III (mGluR7 and mGluR8) metabotropic glutamate receptors. We examined the role of these mGluRs on excitatory synaptic transmission in cultured mitral cells with the use of whole cell patch-clamp recordings. The effects of group-selective mGluR agonists and antagonists were tested on alpha-amino-3-hydroxy-5-methyl...
متن کاملCalcium channels involved in synaptic transmission from reticulospinal axons in lamprey.
The pharmacology of calcium channels involved in glutamatergic synaptic transmission from reticulospinal axons in the lamprey spinal cord was analyzed with specific agonists and antagonists of different high-voltage activated calcium channels. The N-type calcium channel blocker omega-conotoxin GVIA (omega-CgTx) induced a large decrease of the amplitude of reticulospinal-evoked excitatory postsy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 12 6 شماره
صفحات -
تاریخ انتشار 1992